A NONSEPARABLE BANACH SPACE NOT CONTAINING A SUBSYMMETRIC BASIC SEQUENCE

BY

E. ODELL' *Department of Mathematics, University of Texas at Austin, Austin, TX 78712, USA*

ABSTRACT

We give an example of a nonseparable Banach space which does not contain a subsymmetric basic sequence. The space is the dual of a space constructed analogously to the James Tree space, using the Tsirelson space in place of l_2 .

The first example of an infinite dimensional Banach space not containing a subsymmetric basic sequence was given by Tsirelson [16]. Tsirelson's space is separable and reflexive. Since [16] appeared, much more work has been done on this space, its dual and a number of variations thereof (see [3] for a thorough discussion). In particular Figiel and Johnson [5] have shown that there exists a space with a symmetric basis not containing an isomorph of c_0 or l_p ($1 \leq p < \infty$). Thus one immediately obtains the existence of a nonseparable space (with symmetric basis) which does not contain c_0 or l_p ($1 \leq p < \infty$).

In this paper we give an example of a nonseparable space, X , not containing a subsymmetric basic sequence. X is the dual of a separable space, Λ_T . Λ_T is defined analogously to the James Tree space [7] except that we use the unit vector basis of T_M (modified Tsirelson space, [8]) instead of l_2 in defining the norm. As we shall see, Λ_T does not contain l_1 (and so Λ_T^* does not contain c_0) and yet all spreading models of Λ^* are equivalent to either the summing basis or the unit vector basis of c_0 . We shall also show that Λ_T^{**} is isomorphic to $\Lambda_T \bigoplus l_1(\Delta)$, where Δ is the Cantor set and $c_0(\Delta)$ is a quotient of Λ^* . These results have analogues in the James Tree space [10].

The problem which we solve in this paper was first brought to our attention several years ago by H. P. Rosenthal. Rosenthal and Shelah (unpublished)

Received March 4, 1985

^{*}Research partially supported by NSF Grant No. DMS-8403669.

showed that there exists in some Banach space an uncountable normalized set, $(x_{\alpha})_{\alpha \in \Gamma}$, so that every sequence of distinct x_{α} 's is weakly null and not subsymmetric. In a positive direction, W. Henson has shown that this cannot happen in an L₁-space [6]. Indeed, he has shown there must exist a sequence $(x_{\alpha})_{i=1}^{\infty}$ which is almost exchangeable (see [1] for a discussion of almost exchangeable sequences) and in particular symmetric. Also, J. Ketonen [9] showed that if X is a Banach space of the cardinality of a Ramsey cardinal, then X contains a subsymmetric basic sequence.

We use standard Banach space terminology as may be found in [11].

1. Definition of Ar

Let T_M be the modified Tsirelson space discovered by Johnson [8] and let (e_n) be its unit vector basis. (e_n) is a 1-unconditional normalized basis for T_M satisfying for all $x \in T_M$ the implicit relation

(*)
$$
\|x\| = \sup \left\{ \|x\|_{c_0}, \frac{1}{2} \sum_{i=1}^n \|E_i x\| \right\}
$$

where the "sup" is taken over all finite collections of pairwise disjoint subsets of N, $(E_i)_{i=1}^n$, with $n \leq \min E_i$ $(1 \leq i \leq n)$. If $E \subseteq N$ and $x = \sum a_i e_i \in T_M$, $Ex =$ $\Sigma_{i \in E} a_i e_i$. (*) implies

(i) If $(x_i)_{i=1}^n$ are normalized vectors in T_M whose supports relative to $(e_i)_{i=1}^{\infty}$ are disjoint and contained in $\{e_n, e_{n+1}, \ldots\}$, then $(x_i)_{i=1}^n$ is 2-equivalent to the unit vector basis of l_1^n .

 T_M is reflexive [8]. Moreover we shall need the following fact. There exists $c < \infty$ so that if (x_i) is a normalized block basis of (e_i) with $x_n = \sum_{i=k+1}^{l_{n+1}} a_i e_i$, then for any choice of integers $l_n < k_n \leq l_{n+1}$ and scalars (b_n) ,

(ii)
$$
c^{-1}\left\|\sum b_ne_{k_n}\right\| \leq \left\|\sum b_nx_n\right\| \leq c\left\|\sum b_ne_{k_n}\right\|.
$$

This was proved in [4] for the space T (the dual of the original Tsirelson example [5]) and the same argument works for T_M . In fact this was used to prove T and T_M are naturally isomorphic [2].

Let Λ denote the infinite dyadic tree,

$$
\Lambda = \{ (n, i) : n = 0, 1, 2, \ldots, 1 \leq i \leq 2^{n} \}.
$$

The *nth level* of Λ is $\{(n,i): 1 \leq i \leq 2^n\}$. Λ is partially ordered by putting $(n, i) \leq (m, j)$ if $K_{n,i} \supseteq K_{m,j}$ where $(K_{n,i})$ are the triadic intervals used in forming the Cantor set. Thus $K_{0,1} = [0,1], K_{1,1} = [0,\frac{1}{3}], K_{1,2} = [\frac{2}{3},1],$ etc. By a *segment* β , in A we mean a linearly ordered set of the form

$$
\{(n,i_1),(n+1,i_2),(n+2,i_3),\ldots\},\
$$

either finite or infinite in length. In particular β could be a single element of Λ .

We shall also have use for a linear order on Λ . We define $d(0, 1)=1$ and $d(n, i) = \sum_{i=0}^{n-1} 2^i + i$ if $n \ge 1$. If β is a segment with initial node (n, i) , we define its *order* by $o(\beta) = d(n, i)$.

Let x be a real valued function defined on Λ with finite support. If β is a segment in Λ , set

$$
S_{\beta}(x)=\sum_{(n,i)\in\beta}x(n,i).
$$

The norm of x in Λ_T is defined by

$$
\|x\|=\sup\bigg\{\bigg\|\sum_{i=1}^n S_{\beta_i}(x)e_{\sigma(\beta_i)}\bigg\|_{T_M}:(\beta_i)_{i=1}^n\text{ are pairwise disjoint segments in }\Lambda\bigg\}.
$$

We call $y = \sum_{i=1}^{n} S_{\beta_i}(x) e_{\alpha(\beta_i)}$ (with (β_i) ⁿ disjoint segments) a *representative* of x in T_M . Λ_T is defined to be the completion under this norm.

In the James Tree space the norm is defined exactly the same, except that T_M is replaced by l_2 and the e_i 's are the unit vector basis of l_2 . Since this basis is symmetric, one may use e_i in place of $e_{o(\beta_i)}$ in the definition.

We note that by the definition of the norm in Λ_T if β is any nonempty segment (finite or infinite), then S_β extends naturally to a norm one functional in Λ^* . Also if $(x_{(n,i)})_{(n,i)\in\Lambda}$ are the unit node vectors in Λ_T ,

$$
x_{(n,i)}(m,j) = \delta_{((n,i),(m,j))},
$$

then $(x_{(n,i)}_{n,i})_{(n,i)} \in \Lambda$ forms a normalized monotone basis for Λ_T under the ordering induced by $d(n, i)$. Indeed, the projections P_d given by

$$
P_d\bigg(\sum_{(n,i)\in\Lambda}a_{n,i}X_{(n,i)}\bigg)=\sum_{\{(n,i):d(n,i)\leq d\}}a_{n,i}X_{(n,i)}
$$

are norm one for all $d \in N$.

To get a feel for the norm in Λ_T we give a very easy and useful lemma. Roughly speaking, the lemma says that if $x \in \Lambda_T$ is supported on the levels of Λ greater than or equal to the *n*th, then $||x||$ may be calculated (up to a constant) by using in the definition only segments which originate on the *n* th or greater levels.

LEMMA 1. *For all* $n \in \mathbb{N}$ and $x \in \Lambda_T$ with $P_{2^n-1}x = 0$,

 $4^{-1}||x|| \leq \sup{\{\|\sum_{i=1}^k S_{\beta_i}(x)e_{\rho(\beta_i)}\|_{T_M}: (\beta_i)\}\}\$ are disjoint segments in A with $o(\beta_i) \geq 2^n$ for $1 \leq i \leq k$.

PROOF. Let $1 = ||x|| = ||\sum_{i=1}^{k} S_{\beta_i}(x) e_{\alpha(\beta_i)}||_{T_M}$, where $(\beta_i)_i^k$ are disjoint segments in A. We may suppose there is an $l, 0 \le l \le k$, so that for $i > l$, $o(\beta_i) \ge 2^n$ and for $i \leq l$, $o(\beta_i) < 2^n$. If

$$
\bigg\|\sum_{i=l+1}^k S_{\beta_i}(x)e_{\sigma(\beta_i)}\bigg\|_{T_M}\geqq \frac{1}{2},
$$

fine. If not, then

$$
\left\|\sum_{i=1}^l S_{\beta_i}(x)e_{\sigma(\beta_i)}\right\|_{T_M}\geqq \frac{1}{2}.
$$

For $i \leq l$, let $\overline{\beta_i}$ be the largest segment contained in β_i with initial node of the form (n, j_i) . Since $P_{2^n-1}x = 0$, $S_{\tilde{\theta}_i}(x) = S_{\theta_i}(x)$. Also, since $l \leq 2^n - 1$ and $o(\tilde{\beta}_i) \geq 2^n$ $(1 \le i \le l)$, by (i) we have

$$
\left\| \sum_{i=1}^{l} S_{\bar{\beta}_i}(x) e_{\sigma(\bar{\beta}_i)} \right\|_{T_M} \geqq 2^{-1} \sum_{i=1}^{l} |S_{\bar{\beta}_i}(x)|
$$

$$
\geqq 2^{-1} \left\| \sum_{i=1}^{l} S_{\beta_i}(x) e_{\sigma(\beta_i)} \right\| \geqq 4^{-1}.
$$

Before stating our main result, we recall the notion of a spreading model. Let (x_n) be a bounded basic sequence in a Banach space. A (necessarily subsymmetric) basic sequence, (y_n) , in another Banach space is said to be a *spreading model* for (x_n) if for all scalars $(a_i)_{i=1}^k$,

$$
\lim_{n_1 < n_2 < \cdots < n_k} \left\| \sum_{i=1}^k a_i x_{n_i} \right\| = \left\| \sum_{i=1}^k a_i y_i \right\|.
$$

The Brunel-Sucheston theorem (see e.g., [12]) states that if (x_n) is a bounded basic sequence with no norm convergent subsequence, then some subsequence, (x_n) , has a spreading model (y_n) . Furthermore, if (x_n') is weakly null, then (y_n) is an unconditional basic sequence.

In this language, T_M has the property that all of its spreading models are equivalent to the unit vector basis of l_1 .

2. The main theorem

THEOREM 2.

(1) *The vectors* $(x_{(n,i)})_{(n,i)\in\Lambda}$ form a boundedly complete monotone basis for Λ_T .

(2) All spreading models in Λ_T are equivalent to the unit vector basis of l_1 .

(3) A* *is nonseparable.*

(4) Λ_T *does not contain an isomorph of I_i and so* Λ_T^* *does not contain an isomorph of co.*

(5) Λ^* *is the closed linear span of* $\{S_{\beta} : \beta \}$ *is a segment in* $\Lambda\}$.

(6) All spreading models in Λ^* are equivalent to either the summing basis or the *unit vector basis of Co.*

(7) $c_0(\Delta)$ *is a quotient of* Λ^* , where Δ *is the Cantor set.*

(8) Λ^{**} *is isomorphic to* $\Lambda_T \bigoplus l_1(\Delta)$.

PROOF. (1) For $n < m$, let $Q_{n,m} = P_{2^m-1} - P_{2^n-1}$. To prove (1) it suffices to show

LEMMA 3. Let $(x_i)_{i=1}^k$ be normalized vectors in Λ_T . Assume there exist integers $n_0 < n_1 < \cdots < n_k$ so that for $1 \le i \le k$, $x_i = Q_{n_{i-1},n_i}x_i$. Then if $k \le 2^{n_0}$, $(x_i)_{i=1}^k$ is *8-equivalent to the unit vector basis of If.*

PROOF. By (i) it suffices to show that for $1 \le i \le k$, there are disjoint segments $(\beta_{i})_{i=1}^{i}$ in Λ so that each β_i^i lies between the n_{i-1} and n_i levels of Λ and the representatives y_i of x_i given by $y_i = \sum_{j=1}^{p(i)} S_{\beta i}(x_i) e_{\alpha(\beta)}$ satisfy $||y_i|| \ge 4^{-1} ||x_i||$. This is easily done by Lemma 1. •

We shall prove a stronger result later in Lemma 10.

(2) This is a corollary of (1) and Lemma 3. Indeed, every basic sequence $(y_i) \subseteq \Lambda_T$ with a spreading model has a subsequence essentially (up to a perturbation) of the form $x + x_i$ for some $x \in \Lambda_T$, $(x_i) \subseteq \Lambda_T$, where $0 \le \inf_i ||x_i|| \le$ $\sup_i ||x_i|| < \infty$ and $Q_{n_{i-1},n_i}x_i = x_i$ for some $(n_i) \subseteq N$.

(3) This is trivial. If $\beta \neq \gamma$ are infinite segments and $(n,i) \in \beta \setminus \gamma$ then $||S_{\beta} - S_{\gamma}|| \geq (S_{\beta} - S_{\gamma})(x_{(n,i)}) = 1.$

(4) This is a bit more complicated. Part of the proof is similar to an argument in [13]. Suppose Λ_T contains l_1 . Then there exists a normalized sequence $(x_i) \subseteq \Lambda_T$ which is equivalent to the unit vector basis of l_1 and satisfies $Q_{n_{i-1},n_i}x_i = x_i$ for some increasing sequence of integers, (n_i) .

For each element $x \in \Lambda_T$ we associate an element $\hat{x} \in C(\Delta)$ as follows. We identify the points of Δ with the set of maximal segments (branches) of Λ in the natural way. Thus if $\beta = \{(0, i_1), (1, i_2),...\}$ is a branch, β may be regarded as the point in Δ given by $\bigcap_{n=0}^{\infty} K_{n,i_{n+1}}$. We set $\hat{x}(\beta) = S_{\beta}(x)$.

LEMMA 4. *The map* $x \rightarrow \hat{x}$ is a norm one linear mapping of Λ_T into $C(\Delta)$.

PROOF. For $\beta \in \Delta$, $|\hat{x}(\beta)| = |S_{\beta}(x)| \le ||x||$. All that needs to be checked is that \hat{x} is continuous. But if $\beta_n \rightarrow \beta$ in Δ then $S_{\beta_n}(x) \rightarrow S_{\beta}(x)$, or else we would have a sequence of disjoint finite segments, (γ_n) , in Λ with $|S_{\gamma_n}(x)| \geq \varepsilon > 0$ for some $\varepsilon > 0$ and all $n \in \mathbb{N}$, in which case $||x|| = \infty$.

We first show that (\hat{x}_i) cannot be equivalent in $C(\Delta)$ to the unit vector basis of l_1 . For if (\hat{x}_i) is equivalent to the unit vector basis of l_1 , then by Rosenthal's theorem [15] we may assume (by passing to a subsequence and relabeling) that there exist $r \in \mathbb{R}$ and $\delta > 0$ so that if $A_i = \{t \in \Delta : \hat{x}_i(t) > r + \delta\}$ and $B_i =$ $\{t \in \Delta : \hat{x}_i(t) < r\}$, then (A_i, B_i) is Boolean independent. This means that for $k \in \mathbb{N}$ and all $\varepsilon = (\varepsilon_i)_{i=1}^k$ with $\varepsilon_i = \pm 1$, the set 0_i is nonempty where $0_i =$ $\bigcap_{i=1}^k \varepsilon_i A_i$ ($\varepsilon A_i = A_i$ if $\varepsilon = 1$ and $\varepsilon A_i = B_i$ if $\varepsilon = -1$). The 0_ε 's thus comprise 2^k disjoint open sets in Δ . We may assume $r + \delta > 0$ (if not replace (x_i) by $(-x_i)$).

Choose m_0 so large that for $1 \le i \le k$ and $1 \le j \le 2^{m_0}$, the oscillation of each of the continuous functions \hat{x}_i on $K_{m_0,i} \cap \Delta$ is less than $\delta/2$. It follows that for all j, $K_{m_{\nu,i}} \cap 0_{\varepsilon} \neq \emptyset$ for at most one ε . Choose $i_0 > k$ so that $P_{2^{m_{0}-1}} x_{i_0} = 0$. Then for all $\varepsilon = (\varepsilon_i)^k$, $0 \in A_{i_0} \neq \emptyset$ and this implies $||\hat{x}_{i_0}|_{K_{m} \cap \Delta}||_{\infty} > r+\delta > 0$ on at least 2^k distinct $K_{m_{0i}}$'s. Thus $S_{\beta_i}(x_{i_0}) > r + \delta$ for at least 2^{*} disjoint segments, $(\beta_i)_{i=1}^{\infty}$, with $O(\beta_i) \geq 2^{m_0} \geq 2^k$, and so by (i), $||x_{i_0}|| \geq 2^{k-1}(r + \delta)$, which is impossible for large enough k.

Thus we may assume by Rosenthal's theorem [15] that (\hat{x}_i) is pointwise convergent in $C(\Delta)$. By taking differences and then far out convex combinations we may assume that our l_1 basis, (x_i) , also satisfies $\|\hat{x}_i\|_{\infty} \to 0$. But this is impossible as the following lemma shows.

LEMMA 5. *Let* (x_i) be a normalized block basis of $(x_{(n,i)})$ with $||\hat{x}_i|| \rightarrow 0$. Then *there exists a block basis of convex combinations of* (x_i) which is equivalent to *some subsequence* (e_p) *of* (e_i) *in T_M*.

PROOF. By Lemma 3 and the hypothesis there exists (y_i) , a block basis of convex combinations (actually long averages) of (x_i) with $1 \ge ||y_i|| \ge 8^{-1}$ for all i and

$$
\sup\{|S_{\beta}(y_i)|: \beta \text{ is a segment}\} = \varepsilon_i
$$

where $\varepsilon_i \rightarrow 0$ as $i \rightarrow \infty$. We may also assume

 $Q_{m_1,...,m_2}$ $y_i = y_i$ for some increasing sequence $(m_i) \subseteq N$,

and if $p_i = d(m_{2i}, 1)$, then

 $\sum_{i> i} \varepsilon_i < 2^{-(p_i + i)}$. (iii)

We shall prove that (y_i) is equivalent to (e_{p_i}) . We first show that (e_{p_i}) dominates *(y,).*

Let $(a_i)_i^k$ be scalars and suppose (β_i) are disjoint segments in A with

$$
\left\|\sum_{i=1}^k a_i y_i\right\| = \left\|\sum_i \left|S_{\beta_i}\left(\sum_i a_i y_i\right)\right| e_{\sigma(\beta_i)}\right\|_{T_M}
$$

Let $F_i = \{l : p_{i+1} < o(\beta_i) \leq p_i\}, 1 \leq i \leq k$. Fix i and $l \in F_i$. Then

$$
\left|S_{\beta_i}\left(\sum_{j=1}^k a_j y_j\right)\right| \leq |a_i S_{\beta_i}(y_i)| + \sum_{j>i} |a_j| |S_{\beta_i}(y_j)|
$$

$$
\leq |a_i| |S_{\beta_i}(y_i)| + \max_{j\to i} |a_j| \sum_{j\to i} \varepsilon_j.
$$

Thus by the 1-unconditionality of (e_i) ,

$$
\text{(iv)} \qquad \bigg\|\sum_{i=1}^k a_i y_i\bigg\| \leq \bigg\|\sum_{i=1}^k \sum_{l\in F_i} |a_i S_{\beta_l}(y_i)| e_{\alpha(\beta_l)}\bigg\| + \bigg\|\sum_{i=1}^k \sum_{l\in F_i} \max_j |a_i| \sum_{j>i} \varepsilon_i e_{\alpha(\beta_l)}\bigg\|.
$$

Since for each $i \leq k$,

$$
\bigg\|\sum_{i\in F_i} |a_i S_{\beta_i}(y_i)| e_{\sigma(\beta_i)}\bigg\| \leq |a_i| \|y_i\| \leq |a_i|.
$$

and since $p_{i-1} < o(\beta_i) \leq p_i$ for $l \in F_i$, by (ii) the first term on the right side of (iv) is

$$
\leq c \bigg\| \sum_{i=1}^k a_i e_{p_i} \bigg\|.
$$

Also,

$$
\left| \sum_{i=1}^{k} \sum_{i \in F_i} \sum_{j \to i} \varepsilon_j \right| \leq \sum_{i=1}^{k} |F_i| \sum_{j \to i} \varepsilon_j
$$

$$
\leq \sum_{i=1}^{k} 2^{\rho_i} \left(\sum_{j \to i} \varepsilon_j \right) \leq 2^{-i}
$$

by (iii). Thus the second term in (iv) is

$$
\leq \max_{j} |a_{j}| \sum_{i=1}^{r} 2^{-i} = \max_{j} |a_{j}|.
$$

This proves (e_{p_i}) dominates (y_i) .

By (ii) and Lemma 1 it follows that (y_i) dominates (e_{q_i}) where $q_i = d(m_{2i-1}, 1)$ and hence since (e_{q_i}) is equivalent to (e_{p_i}) (again, by (ii)), (y_i) is equivalent to (e_{p_i}) .

■

REMARK. We do not know if every infinite dimensional subspace of Λ_T contains a sequence equivalent to some (e_{p_i}) .

The fact that Λ^* does not contain c_0 follows from Λ_T not containing l_1 by a classical result of Bessaga and Pelczynski (see [11], p. 103).

(5) We first prove

LEMMA 6. Let (x_i) be a normalized block basis of $(x_{(n,i)})$. If $\hat{x}_i \rightarrow 0$ weakly in *C(* Δ *), then* $x_i \rightarrow 0$ weakly in Λ_T .

PROOF. If (x_i) is not weakly null, then by passing to a subsequence we may suppose there is an $f \in \Lambda_T^*$, $||f|| = 1$ and $f(x_i) \ge \delta > 0$ for all i. Thus $||y|| \ge \delta$ whenever y is a convex combination of the x_i 's. But there is a block basis, (y_i) , of convex combinations of (x_i) , with $||\hat{y}_i|| \to 0$. Thus by Lemma 5, there is a block basis (z_i) of convex combinations of (x_i) which is weakly null, a contradiction. \blacksquare

Let $[(S_{\beta})]$ be the closed linear span of all S_{β} 's where β is a segment. If $[(S_{\beta})] \neq \Lambda_T^*$, there exists $F \neq 0$ in Λ_T^{**} with $F|_{[(S_{\alpha})]} = 0$. Since l_1 does not embed in Λ_T , by [14] there exists $(x_n) \subseteq \Lambda_T$ which converges weak* (in Λ_T^{**}) to F with $||x_n|| = ||F||$ for all n. Since $F|_{|(s_n)|} = 0$, we may suppose (x_n) is a block basis of $(x_{(n,i)})$. Thus since $\lim_{n} \hat{x}_n(\beta) = \lim_{n} S_{\beta}(x_n) = F(S_{\beta}) = 0$ for all segments β , by Lemma 6, (x_n) is weakly null and so $F = 0$, a contradiction.

(6) We shall show that if $(f_i) \subseteq \Lambda^*$ is a basic sequence with a spreading model, then $(f_{2i} - f_{2i+1})$ has a spreading model equivalent to the unit vector basis of c_0 . (6) follows by the following lemma.

LEMMA 7. Let (y_n) *be a normalized subsymmetric basic sequence so that* $(y_{2n} - y_{2n+1})$ *is equivalent to the unit vector basis of c₀. Then* (y_n) *is equivalent to either the unit vector basis of co or to the summing basis.*

REMARK. Since the spreading model of a weakly null sequence is unconditional, it will follow that the spreading model of every weakly null sequence in Λ_T is equivalent to the unit vector basis of c_0 .

PROOF OF LEMMA 7. Recall that the summing basis, (s_n) , satisfies $\|\sum a_i s_i\|$ = $\sup_n |\sum_{i=1}^n a_i|$. If (y_n) is weakly null, it is unconditional hence there exists $K < \infty$ so that $\|\sum_{i=1}^{n} \varepsilon_i y_i\| \leq K$ for all $\varepsilon_i = \pm 1$, $n \in \mathbb{N}$. Thus (y_n) is equivalent to the unit vector basis of c_0 .

If (y_n) is not weakly null, then there exists $f \in [(y_n)]^*$ so that $f(y_n) \ge \varepsilon > 0$ for some subsequence (y_n) . Thus by subsymmetry, (y_n) dominates the summing basis. That (y_n) is dominated by (s_n) follows from the fact that $(y_{2n} - y_{2n+1})$ and

 $(y_{2n-1}- y_{2n})$ are both K-equivalent to the unit vector basis of c_0 , for some K. Indeed,

$$
\sum a_i y_i = a_1 (y_1 - y_2) + (a_1 + a_2) (y_2 - y_3) + (a_1 + a_2 + a_3) (y_3 - y_4)
$$

+ $(a_1 + a_2 + a_3 + a_4) (y_4 - y_5) + \cdots$

and so

$$
\left|\sum a_i y_i\right| \leq 2K \left\|a_i s_i\right\|.
$$

Before attacking the general $(f_i) \subseteq \Lambda^*$, we prove the result in a special case. Let $(x_{n,i}^*)$ be the biorthogonal functionals to $(x_{n,i})$.

LEMMA 8. Let $(f_i)_{i=1}^k$ *be a normalized block basis of* $(x_{(n,i)}^*)$ with

 $f_i \in \text{span}\{x_{(n,i)}^*: 2^{n_{i-1}} \leq d(n,i) \leq 2^{n_i}\}$

for $1 \le i \le k$ *and integers* $n_0 < n_1 < \cdots < n_k$. If $k \le 2^{n_0}$, *then* $(f_i)_{i=1}^k$ *is* 32*equivalent to the unit vector basis of* l_{∞}^{k} .

PROOF. Let $\|\sum_{i}^{k} a_{i}f_{i}\|=\sum_{i}^{k} a_{i}f_{i}(x)$ where $x \in \Lambda_{T}$, $\|x\| \leq 2$ and $P_{2^{n_{0-1}}}x = 0$. Write $x = \sum_{i=1}^{k} x_i$ where $x_i = Q_{n_{i-1}, n_i}x$. Then

$$
\sum_{i=1}^{k} a_i f_i(x) = \sum_{i=1}^{k} a_i f_i(x_i)
$$
\n
$$
\leq \max_{i} |a_i| \max_{i} \|f_i\| \sum_{i=1}^{k} \|x_i\|
$$
\n
$$
\leq 8 \max_{i} |a_i| \|x\|
$$
\n
$$
\leq 16 \max_{i} |a_i|
$$

(by Lemma 3).

Also if $||x|| = 1$ and $f_{i_0}(x) = \text{sign } a_{i_0}$,

$$
\left\| \sum a_i f_i \right\| \geq 2^{-1} \sum a_i f_i \left(Q_{i_0-1,i_0} x \right)
$$

= 2^{-1} |a_{i_0}|.

For the general case, let (f_i) be a normalized basic sequence in Λ^* with a spreading model. We need only show $(f'_{2i}-f'_{2i+1})$ has a spreading model equivalent to the unit vector basis of c_0 for some subsequence, (f'_i) .

We may thus assume $\lim_{j\to\infty} f_j(x_{(n,i)})$ exists for all $(n,i)\in\Lambda$. Also we may assume (by (5)) that $f_i \in \text{span}\{S_\beta : \beta \text{ is a segment}\}$ for all i. The following lemma is an easy consequence of Lemma 6.

LEMMA 9. Let β be an infinite segment in Λ . Then $(x_{(n,i)})_{(n,i)\in\beta}$ is weak Cauchy.

PROOF. If not, there exists a subsequence (y_n) of $(x_{(n,i)})_{(n,i)\in\mathcal{B}}$, an $f \in \Lambda^*$ and an $\varepsilon > 0$ with $f(y_{2n} - y_{2n+1}) > \varepsilon$ for all n. But $(y_{2n} - y_{2n+1})$ is weakly null in $C(\Delta)$ and so $(y_{2n} - y_{2n+1})$ is weakly null in Λ_T , a contradiction.

Write $f_1 - f_2 = g_1 + h_1$ where $g_1 \in \text{span}\{x_{(n,i)}^* : d(n,i) \leq 2^{m_1}\}\$ and $h_1 = \sum_{i=1}^{k(1)} a_i S_{\beta_i}$, where the β_i^{\dagger} 's are pairwise disjoint infinite segments originating at the m_i -level of Λ (i.e., $2^{m_1} \leq o(\beta_i^1) < 2^{m_1+1}$ for $1 \leq i \leq k(1)$).

Let

$$
A_p(i_0) = \lim_{(n,i) \in \beta_{i_0}^+} f_p(x_{(n,i)}).
$$

We may assume (by passing to a subsequence) that $A(i_0) = \lim_{p \to \infty} A_p(i_0)$ exists for $1 \le i_0 \le k(1)$. Thus we may assume (by perturbing the f_i 's, if necessary) that for $i > 2$,

$$
f_i = \sum_{i=1}^{k(1)} A(i) S_{\beta_i} + d_i
$$

where $d_i \in \text{span}\{S_\beta : \beta \text{ is a segment in } A, \beta \cap \beta_i^1 \text{ is finite for } 1 \leq i \leq k(1)\}.$ Hence, by perturbing, we may suppose $f_3 - f_4 = g_2 + h_2$ where $g_2 \in \text{span}\{x_{(n,i)}^*: 2^{m_1} \leq d(n,i) < 2^{m_2}\}\$ and $h_2 = \sum_{i=1}^{k(2)} a_i^2 S_{\beta_i^2}$, where the β_i^2 's are disjoint infinite segments originating at the m_2 -level of Λ and moreover the β_i^2 's are disjoint from the β_i 's as well!

Continue in this fashion, obtaining (after passing to subsequences and perturbing) $f_{2l-1} - f_{2l} = g_l + h_l$ with $g_l \in \text{span}\{x^*_{(n,i)} : 2^{m_l} \leq d(n,i) \leq 2^{m_l}\}$ and $h_l =$ $\Sigma_{i=1}^{k(l)} a_i^l S_{\beta_i^l}$ with the β_i^l 's infinite pairwise disjoint segments originating on the m_i -level of Λ and disjoint from the β_i^s for $1 \leq j < l$ and $1 \leq i \leq k(j)$. Note that $||g_i|| \leq 2$ and $||h_i|| \leq 4$ for all μ .

We claim that this sequence of differences of a subsequence of (f_i) , which we have relabelled $(f_{2i} - f_{2i+1})$, has a spreading model equivalent to the unit vector basis of c_0 . Indeed let $n \in \mathbb{N}$ and let $(a_i)_{i=n}^{2n}$ be scalars. We shall show

(v)
$$
\left\| \sum_{n}^{2n} a_i (f_{2i} - f_{2i+1}) \right\| \leq 416 \max_i |a_i|,
$$

which will complete the proof.

To see this we write

$$
\left\|\sum_{n}^{2n} a_i (f_{2i}-f_{2i+1})\right\| \leq \left\|\sum_{n}^{2n} a_i g_i\right\|+\left\|\sum_{n}^{2n} a_i h_i\right\|.
$$

By Lemma 8,

$$
\left\| \sum_{i=1}^{2n} a_i g_i \right\| \leq 16 \max_i |a_i| \|g_i\| \leq 32 \max_i |a_i|.
$$

Let $||x|| \le 2$ with $P_{2^m-1}x = 0$ and $||\sum_{n=1}^{\infty} a_i h_i|| = \sum_{n=1}^{\infty} a_i h_i(x)$. For $n \le i < 2n$, let $E_i = \left\{ (q, j) \in \Lambda : (q, j) \notin \bigcup_{n \leq l < i} \bigcup_{p=1}^{\infty} \beta_p^n \text{ and } 2^{m_i} \leq o(q, j) \leq 2^{m_{i+1}}, \text{ or } (q, j) \in \bigcup_{p=1}^{\infty} \beta_p^n \right\}.$

Define

$$
E_{2n}=\Big\{(q,h)\in\Lambda:(q,j)\not\in\bigcup_{n\leq l<2n}\bigcup_{p=1}^{k(l)}\beta_p^l\quad\text{and}\quad 2^{m_{2n}}\leq O(q,j)\Big\}.
$$

Let

$$
x = \sum_{i=1}^{2n} x_i \quad \text{where } x_i \in \text{span}\{x_{(q,i)} : (q,j) \in E_i\}.
$$

LEMMA 10. $\Sigma_n^{2n} ||x_i|| \leq 48 ||x||$.

PROOF. It suffices to show that each x_i has a representative $y_i = \sum_j S_{\gamma_i^j}(x_i) e_{\sigma(\gamma^j)}$ where the γ_i^i 's are segments contained in E_i and $||y_i|| \geq (24)^{-1}||x_i||$.

Each x_i can be expressed as $x_i = \sum_{i=1}^{q(i)} x_i^i$ where $q(i) \leq 2^{m_i}$ and the x_i^i 's are disjointly supported vectors, each supported in E_i and "separated" from one another by the infinite branches — the β_p^{i} 's for $l < i$.

SUBLEMMA. Let γ_1 and γ_2 be disjoint infinite segments, $\gamma_i =$ ${(m, j_0), (m + 1, j_1), \ldots}$ *for* $i = 1, 2$, *with* $j_0^1 < j_0^2$. Let $(\beta_i)_{i=1}^r$ be disjoint infinite *segments originating at the (m + k)-level of* Λ (k > 0) and suppose that $j^1_k < j < j^2_k$ *for all* $(m+k,j) \in \bigcup_{i}^{r} \beta_{i}$. Let $F = \{(m+n,j) \in \Lambda : 0 \leq n \leq k \text{ and } j_{n}^{1} < j < j \leq m \}$ j_n^2 \cup $\bigcup_{i=1}^r \beta_i$. Let $x \in \text{span}\{x_{(n,i)}:(n,i)\in F\}$. Then x has a representative, $y =$ $\sum S_{\delta_i}(x)e_{\sigma(\delta_i)},$ where the δ_i 's are disjoint segments contained within F and $||y|| \ge$ $12^{-1}||x||$.

PROOF OF SUBLEMMA. Let $z = \sum S_{\alpha_i}(x)e_{\alpha_i}$ be a representative of x with $||z|| \ge 4^{-1}||x||$, such that each segment α_i originates at level m or a larger level. We may assume *for all i,* $\alpha_i \subseteq F \cup \gamma_1 \cup \gamma_2$ *and* $S_{\alpha_i}(x) \neq 0$. Let $I_1 = \{i : \alpha_i\}$ originates on γ_1 , $I_2 = \{i : \alpha_i \text{ originates on } \gamma_2\}$ and $I_3 = \{i : \alpha_i \text{ originates on } F\}.$ Then for some $p = 1, 2$ *or* 3

$$
\left\|\sum_{i\in I_p} S_{\alpha_i} e_{\sigma(\alpha_i)}\right\| \geq 3^{-1} \|z\|.
$$

If $p = 3$, we let $y = \sum_{i \in I_1} S_{\alpha_i}(x) e_{\alpha_i}$. If $p = 1$ (a similar argument works for $p = 2$), for $i \in I_1$ let $\delta_i = \alpha_i \cap F$, and set $y = \sum_{i \in I_1} S_{\delta_i}(x) e_{\sigma(\delta_i)}$. Since $S_{\alpha_i}(x) = S_{\delta_i}(x)$ and $o(\alpha_i) < o(\alpha_i)$ implies $o(\delta_i) < o(\delta_i)$,

$$
3^{-1}\|z\| \leq \left\|\sum_{i\in I_1} S_{\alpha_i}(x)e_{\sigma(\alpha_i)}\right\| \leq \|y\|.
$$

This proves the sublemma.

Returning to the proof of Lemma 10, by applying the sublemma to each x_i^i we can find a representative y_i of x_i determined by segments contained wholly within E_i and with

$$
\|y_i\| \geq 2^{-1} \left(\sum_{j=1}^{q(i)} 12^{-1} \|x'_j\| \right) \geq (24)^{-1} \|x_i\|.
$$

Finally we complete the proof of (v):

 \parallel

$$
\sum_{n}^{2n} a_{i}h_{i} = \sum_{n}^{2n} a_{i}h_{i}(x) = \sum_{n}^{2n} a_{i}h_{i}(x_{i})
$$
\n
$$
\leq \max_{i} |a_{i}| \|h_{i}\| \sum_{n}^{2n} \|x_{i}\|
$$
\n
$$
\leq 4(48) \|x\| \max_{i} |a_{i}| \quad \text{by Lemma 10,}
$$
\n
$$
\leq 384 \max_{i} |a_{i}|.
$$

The proofs of (7) and (8) are similar to arguments in [10].

(7) First we prove

LEMMA 11. Let $(\beta_i)_{i=1}^n$ be disjoint infinite segments in Λ , all originating at level *m* with $m \ge n$. Then $(S_{\beta_i})_{i=1}^n$ is 2-equivalent to the unit basis of l^{π}_{∞} .

PROOF. Let $(a_i)_{i=1}^n$ be scalars and choose $x \in \Lambda_{\tau}$ with $||x|| = 1$ and $||\Sigma_i^n a_i S_{\beta_i}|| =$ $\sum_{i=1}^{n} a_{i} S_{\beta_{i}}(x)$. Then clearly

$$
\max_i |a_i| \leqq \left\| \sum_{i=1}^{n} a_i S_{\beta_i} \right\| = \sum_{i=1}^{n} a_i S_{\beta_i}(x) \leqq \max_i |a_i| \sum_{i=1}^{n} |S_{\beta_i}(x)|
$$

$$
\leqq 2 \max_i |a_i| \left\| \sum_{i=1}^{n} S_{\beta_i}(x) e_{\sigma(\beta)} \right\|
$$

$$
\leqq 2 \max_i |a_i|.
$$

▬

We claim that $\Lambda^*/[(x^*_{(n,i)})_{(n,i)\in\Lambda}]$ is isomorphic to $c_0(\Delta)$. Indeed, define $Q: \Lambda^*_T \to c_0(\Delta)$ by $Q(f)(\beta) = \lim_{(n,i) \in \beta} f(x_{(n,i)})$, the limit existing by Lemma 9. Q is a well defined bounded linear mapping with kernel = $[(x_{n,i}) : (n,i) \in \Lambda]$ by (5) **and Lemma 11.**

(8) Since $(x_{(n,i)})$ is boundedly complete, $\Lambda_{\tau} = B^*$ where $B = [(x_{(n,i)}^*)_{(n,i)} \in \Lambda]$. Thus by (7), $B^{**}/B \sim c_0(\Delta)$ (" \sim " denotes isomorphism) and so $B^{\perp} \sim l_1(\Delta)$ $(B^{\perp}$ taken in B^{***}). Hence

$$
\Lambda^{**}_T=B^{***}\sim B^\perp\bigoplus B^*\sim l_1(\Delta)\bigoplus \Lambda_T.
$$

Alternatively, it is not hard to check directly that if for $\beta \in \Delta$, F_{β} is the weak^{*}-limit in Λ_T^{**} of the sequence $(x_{(n,i)})_{(n,i)\in\beta}$, then $(F_\beta)_{\beta\in\Delta}$ is 2-equivalent to the unit vector basis of $l_1(\Delta)$ and $\Lambda_T \bigoplus [(F_\beta)_{\beta \in \Delta}] = \Lambda_T^{**}$.

PROBLEM. Give an example of a nonseparable reflexive space not containing a subsysmmetric basic sequence.

REFERENCES

1. I. Berkes and H. P. Rosenthal, *Almost exchangeable sequences of random variables,* to appear.

2. P, G. Casazza and E. Odell, *Tsirelson's space and minimal subspaces,* in *Longhorn Notes,* University of Texas at Austin, 1982-1983, pp. 61-72.

3. P. G. Casazza and T. Shura, *Tsirelson Space,* to appear.

4. P. G. Casazza, W. B. Johnson and L. Tzafriri, *On Tsirelson's space,* Israel J. Math. 47 (1984), 81-98.

5. T. Figiel and W. B. Johnson, A uniformly convex Banach space which contains no l_p , Compositio Math. 29 (1974), 179-190.

6. W. Henson, to appear.

7. R. C. James, *A separable somewhat reflexive Banach space with non-separable dual,* Bull. Amer. Math. Soc. 80 (1974), 738-743.

8. W. B. Johnson, *A reflexive Banach space which is not sufficiently Euclidean*, Studia Math. 55 (1976), 201-205.

9. J. Ketonen, *Banach spaces and large cardinals,* Fund. Math. 81 (1974), 291-303.

10. J. Lindenstrauss and C, Stegall, *Examples of separable spaces which do not contain l~ and whose duals are non-separable,* Studia Math. 54 (1975), 81-105.

11. J. Lindenstrauss and L. Tzafriri, *Classical Banach Spaces I,* Springer-Verlag, Berlin, 1977.

12. E. Odell, *Applications of Ramsey theorems to Banach space theory,* in *Notes in Banach Spaces* (H. E. Lacey, ed.), University of Texas Press, Austin, Texas, 1980, pp. 379-404.

13. E. Odell, *A normalized weakly null sequence with no shrinking subsequence in a Banach space not containing l~,* Compositio Math. 41 (1980), 287-295.

14. E. Odell and H. P. Rosenthal, *A double-dual characterization of separable Banach spaces not containing l~,* Israel J. Math. 20 (1975), 375-384.

15. H. P. Rosenthal, *A characterization of Banach spaces containing l₁, Proc. Nat. Acad. Sci.* U.S.A. 71 (1974), 2411-2413.

16. B. S. Tsirelson, *Not every Banach space contains l_p or c₀, Funct. Anal. Appl. 8 (1974),* 138-141.