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ABSTRACT 

We give an example of a nonseparable Banach space which does not contain a 
subsymmetric basic sequence. The space is the dual of a space constructed 
analogously to the James Tree space, using the Tsirelson space in place of l:. 

The first example of an infinite dimensional Banach space not containing a 

subsymmetric basic sequence was given by Tsirelson [16]. Tsirelson's space is 

separable and reflexive. Since [16] appeared, much more work has been done on 

this space, its dual and a number of variations thereof (see [3] for a thorough 

discussion). In particular Figiel and Johnson [5] have shown that there exists a 

space with a symmetric basis not containing an isomorph of Co or lp (1 _-< p < ~). 

Thus one immediately obtains the existence of a nonseparable space (with 

symmetric basis) which does not contain co or Ip (1 =< p < ~). 

In this paper we give an example of a nonseparable space, X, not containing a 

subsymmetric basic sequence. X is the dual of a separable space, AT. AT is 

defined analogously to the James Tree space [7] except that we use the unit 

vector basis of TM (modified Tsirelson space, [8]) instead of 12 in defining the 

norm. As we shall see, Ar does not contain It (and so A* does not contain co) and 

yet all spreading models of A* are equivalent to either the summing basis or the 

unit vector basis of co. We shall also show that A** is isomorphic to AT O ll(A), 

where A is the Cantor set and c0(A) is a quotient of A*. These results have 

analogues in the James Tree space [10]. 

The problem which we solve in this paper was first brought to our attention 

several years ago by H. P. Rosenthal. Rosenthal and Shelah (unpublished) 
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98 E. O D E L L  Isr. J. Math. 

showed that there exists in some Banach space an uncountable normalized set, 

(x~),~r, so that every sequence of distinct x~ 's is weakly null and not subsymmet- 

ric. In a positive direction, W. Henson has shown that this cannot happen in an 

Lrspace [6]. Indeed, he has shown there must exist a sequence (x,,)?:~ which is 

almost exchangeable (see [1] for a discussion of almost exchangeable sequences) 

and in particular symmetric. Also, J. Ketonen [9] showed that if X is a Banach 

space of the cardinality of a Ramsey cardinal, then X contains a subsymmetric 

basic sequence. 

We use standard Banach space terminology as may be found in [11]. 

1. Definition of Ar 

Let TM be the modified Tsirelson space discovered by Johnson [8] and let (e.) 

be its unit vector basis. (e,,) is a 1-unconditional normalized basis for TM 

satisfying for all x E TM the. implicit relation 

where the "sup" is taken ow~r all finite collections of pairwise disjoint subsets of 

N, (E~)L1, with n _-< minEi (1_-< i_-< n). If E C N and x = Y~aie~ E TM, Ex = 

Y~Ea~e~. (*) implies 

(i) If (x,)L, are normalized vectors in TM whose supports relative to (e~)L, 

are disjoint and contained in {en,e,÷~ ,...}, then (x~)~-i is 2-equivalent to 

the unit vector basis of l~. 

TM is reflexive [8]. Moreover we shall need the following fact. There exists 

c < oc so that if (x~) is a normalized block basis of (e~) with x, = YtU~' ÷~ a~¢, then 

for any choice of integers l~ < k, _-< l,.~ and scalars (b,), 

(ii) c ' 2b -ek .  =< 2 b - x -  <_-c 2 b , e ~ ,  . 

This was proved in [4] for the space T (the dual of the original Tsirelson example 

[5]) and the same argument works for TM. In fact this was used to prove T and 

T~ are naturally isomorphic [2]. 

Let A denote the infinite dyadic tree, 

A ={(,,~,i):n = 0,1,~, . . . ,  1 ~ i_-<2"}. 

The nth level of A is {(n,i):l<-_i<=2"}. A is partially ordered by putting 

(n, i)=< (m,j) if K,,~ D K,,,,i where (K,.,) are the triadic intervals used in forming 
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the Cantor set. Thus K,,,, = [0,1], K,,~ = [0,~], Kl,: = [~, 1], etc. By a segment [3, in 

A we mean a linearly ordered set of the form 

{(n,i ,) ,(n + 1, i2),(n + 2, i3) . . . .  }, 

either finite or infinite in length. In particular/3 could be a single element of A. 

We shall also have use for a linear order on A. We define d(O, 1)= 1 and 

d(n, i) = ZTGl 2 j + i if n => 1. If [3 is a segment with initial node (n, i), we define its 

order by 0( /3)= d(n , i ) .  

Let x be a real valued function defined on A with finite support. If /3 is a 

segment in A, set 

S0(x) = ~ x(n,i). 
(n,i)EO 

The norm of x in AT is defined by 

I[ x II = sup -([3,)~=l are pairwise disjoint segments in A . 

We call y = ZL~ S~,(X)eo~o,~ (with ([3~)~ disjoint segments) a representative of x in 

TM. Ar is defined to be the completion under this norm. 

In the James Tree space the norm is defined exactly the same, except that TM 

is replaced by 12 and the e~'s are the unit vector basis of l~. Since this basis is 

symmetric, one may use ei in place of e o(o,~ in the definition. 

We note that by the definition of the norm in AT if/3 is any nonempty segment 

(finite or infinite), then S0 extends naturally to a norm one functional in A*. Also 

if (x~,,o)~,,o~A are the unit node vectors in AT, 

x ~ . . , , ( m . j )  = ~,°.,,.,,..i,~, 

then (x~,,i~)~,.,~ forms a normalized monotone basis for AT under the ordering 

induced by d(n , i ) .  Indeed, the projections Pd given by 

(n,i)EA {(n,i):d(n,i)<d} 

are norm one for all d E N. 

To get a feel for the norm in AT we give a very easy and useful lemma. 

Roughly speaking, the lemma says that if x E AT is supported on the levels of A 

greater than or equal to the n th, then II x II may be calculated (up to a constant) by 

using in the definition only segments which originate on the n th or greater levels. 

LEMMA 1. For all n C N and x E AT with P2"-1x = O, 
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4 l[[x II ~ sup{liE,L, s,~,(x)e,,¢,,,lI,M: (/3,)1 ~ are disjoint segments in 

A with o(/3,)>=2" for l<=i<=k}. 

PROOF. Let 1 = l[x tl = I1 x)-~ where are disjoint segments 

in A. We may suppose there is an l, 0 _< l _< k, so that for i > I, 0(/3,) >= 2" and for 

i<=l, o(/3,)< 2". If 

Se,(X)eo~¢,l = _, 
/= /+1 TM 

fine. If not, then 

( )  1 

*=1 T M 

For i ~ l, let fi~ be the large.st segment contained in/3, with initial node of the 

form (n, j,). Since Pzo_, x = 0, S~, (x) = Sa, (x). Also, since l -<_ 2" - 1 and o (fi,) > 2 ~ 

(1 _-< i ~ l) ,  by (i) we have 

T~ l SL(x)eoG) >=2 ' 2  [S~,(x)I 
i=l i=l 

2 ->>=2' ,= I S,,(X)eo~o,) >=4-'. • 

Before stating our main result, we recall the notion of a spreading model.  Let 

(x.) be a bounded basic sequence in a Banach space. A (necessarily subsymmet-  

ric) basic sequence, (y,),  in another  Banach space is said to be a spreading model 
for (x.) if for all scalars (a~)~:,, 

nl<"~l!m . . . .  ~ aixni : ,=1 ~ a i y i .  

The Brunel-Sucheston theorem (see e.g., [12]) states that  if (x~) is a bounded 

basic sequence with no norm convergent subsdquence, then some subsequence,  

(x '~), has a spreading model ([y.). Fur thermore ,  if (x '~) is weakly null, then (y,)  is 

an uncondit ional  basic sequence. 
In this language, TM has the property that all of its spreading models are 

equivalent to the unit vector basis of 1~. 

2. The main theorem 

THEOREM 2. 

(1) The vectors (xc~.o)c~,o~A form a boundedly complete monotone basis for AT. 
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(2) A l l  spreading models in Ar are equivalent to the unit vector basis of  l~. 

(3) A* is nonseparable. 

(4) Ar does not contain an isomorph of  Ii and so A*  does not contain an 

isomorph of  co. 

(5) A* is the closed linear span of {S~ :[3 is a segment in A}. 

(6) Al l  spreading models in A*  are equivalent to either the summing  basis or the 

unit vector basis of  Co. 

(7) co(A) is a quotient of  A* ,  where zX is the Cantor set. 

(8) A** is isomorphic to A ~ G I , ( A ) .  

PROOF. (l) For n < m, let Q,,m = P:- ~ - P~,-~. To prove (1) it suffices to show 

LEMMA 3. Let  (x~)~  be normalized vectors in AT. A s s u m e  there exist integers 

no< n1 < " "  < nk so that for 1 <= i <= k, x~ = Q ....... xi. Then if k <= 2 "0 , (x~)~=~ is 

8-equivalent to the unit vector basis of If.  

PROOF. By (i) it suffices to show that for 1 _-< i ~ k, there are disjoint segments 

(/3~)f2] in A so that each fl~ lies between the n,-i and n, levels of A and the 

representatives y, of x, given by y, = Zf~2~ S~ (x,)e o~) satisfy II Y, II => 4 '11 x, II- This 
is easily done by Lemma 1. • 

We .shall prove a stronger result later in Lemma 10. 

(2) This is a corollary of (1) and Lemma 3. Indeed, every basic sequence 

(yi)C_AT with a spreading model has a subsequence essentially (up to a 

perturbation) of the form x + xi for some x E AT, (Xi) _C AT, where 0 < inf~ IIx~ II =< 
sup, llx, Jr<~ and Q ...... x~ =x~ for some (n~)_CN. 

(3) This is trivial. If / 3 / 3 ,  are infinite segments and ( n , i ) E f l \ y  then 

It S~ - S, II > (S~ - S,)(x(,,,)) = 1. 

(4) This is a bit more complicated. Part of the proof is similar to an argument 

in [13]. Suppose AT contains l~. Then there exists a normalized sequence 

(Xi)C_AT which is equivalent to the unit vector basis of 11 and satisfies 

Q ....... x, = x, for some increasing sequence of integers, (n~). 

For each element x ~ AT we associate an element 2 E C(A) as follows. We 

identify the points of A with the set of maximal segments (branches) of A in the 

natural way. Thus if fl = {(0, i~), (1, i2),... } is a branch, fi may be regarded as the 

point in A given by A~=oK,,,.+,. We set 2 ( f i ) =  S~(x). 

LEMMA 4. The map x ~ 2 is a norm one linear mapping of  AT into C(A). 
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PROOF. For  /3 CA,  I K/3)l = r&Kx)l llxll. All that needs to be checked is 

that 2 is continuous.  But if /~I,---~/3 in A then S~o(x)--+S,(x), or else we would 

have a sequence of disjoint finite segments,  (7°), in A with I&.(x)l  _-> e > 0 for 

some e > 0  and all n E N ,  ir, which case Ilxll = oc. • 

We first show that  (2~) cannot  be equivalent  in C(A) to the unit vector  basis of 

11. For  if ( i t )  is equivalent  to the unit vector  basis of l~, then by Rosenthal ' s  

theorem [15] we may assume (by passing to a subsequence and relabeling) that 

there exist r E R  and 6 > 0  so that if A ~ = { t E A : ; ~ ( t ) > r + 6 }  and B~= 

{ t E h : i ~ ( t ) < r } ,  then (A ,B~)  is Boolean  independent .  This means  that for  

k ~ N  and all e=(e~)~=~ with e , =  +1 ,  the set 0, is nonempty  where  0~ = 

A~ le~A~ (eA~ = A~ if e = 1 :and eA~ = B~ if e = - 1). The  0~'s thus comprise 2 k 

disjoint open  sets in A. We may assume r + 6 > 0 (if not replace (x~) by ( - x~)). 

Choose  mo so large that for  1 =< i =< k and 1 <: j <= 2"', the oscillation of each of 

the cont inuous functions g~ on K,,,,j 7/A is less than 6/2. It follows that for  all j, 

K~,.i f-1 0 ~ . / Q  for at most  one e. Choose  io > k so that P.~,, ~x~, = 0. Then  for all 

e : (e,)f, 0~ 71A~,#Q and 1:his implies I1<1  ,,   ll >r+6 >0 on at least 2 k 

distinct K,~,.j's. Thus S~j(x~,)> r + 6 for  at least 2 disjoint segments,  (/3J)i<, with 

O(fii)>_-2m,'= > 2 k, and so by (i), IIx~,tl > 2 k '(r + 6), which is impossible for  large 

enough k. 

Thus we may assume b~ Rosenthal ' s  theorem [15] that (2~) is pointwise 

convergent  in C(A). By taking differences and then far out convex combinat ions  

we may assume that our  l, basis, (x~), also satisfies I1£1[~-~0. But this is 

impossible as the following lemma shows. 

LEMMA 5. Let (x~) be a normalized block basis of (x~,,~,) with U;~ II ~---~0. Then 
there exists a block basis of convex combinations of (x~) which is equivalent to 
some subsequence (ep,) of (e~) in TM. 

PROOF. By L e m m a  3 and the hypothesis  there  exists (y~), a block basis of 

convex combinat ions  (actually long averages)  of (x,) with 1 _-> IlY, II --> 8 ' f o r  all i 

and 

sup{] S~(y,)I :/3 is a segment} = e~ 

where  e , ~ 0  as i ~ .  We may also assume 

Q .. . . . . . .  y~ = y~ for some increasing sequence (m~) c_ N, 

and if p, = d (m2 ,1 ) ,  then 

j>i 
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We shall prove that (y~) is equivalent to (G). We first show that (e,,,) dominates 
(y,). 

Let (a,), ~ be scalars and suppose (/3~) are disjoint segments in A with 

2°,,,: ') 
Let F~ ={ l :p ,  ,<o(f l , )<=p,},  l<=i<=k. Fix i and I E F , .  Then 

/=1 j > i  

_<-[a~l]S, , (y , ) l+max[aj lZ ej. 
/ -i / -t 

Thus by the 1-unconditionality of (el), 

(iv) ,-,~ a,,, <= ,:,~ ,~,.,~' ]a,S,,,(yi)]e,,,,,, + ,=,~] ,~-,~,2 max [ a, [ 2 ,  ,-~, e,e,,,•,, . 

Since for each i _< k, 

la,s,,(y,)le,,,,,~ <= la, l lly, ll<- Ia, I, 

and since p, ~ < o (/3~) _< p, for l E F,., by (ii) the first term on the right side of (iv) 
is 

< C ~ aier, ' . 
i= l  

Also, 

l ~ F ,  • i I . 

_-<~'.2 p' ej ~ 2  ~ 

by (iii). Thus the second term in (iv) is 

-<_ maxfaj f 2 2-' = maxl¢l. 
J i : 1  

This proves (eel) dominates (yi). 
By (ii) and Lemma l it follows that ( y i )  dominates (%) where qi = d ( m 2 i  ], l) 

and hence since (eq,)is equivalent to (el,,) (again, by (ii)), (yi) is equivalent to (ep,). 
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REMARK. We do not know if every infinite dimensional subspace of Ar 

contains a sequence equivalent to some (e,,). 

The fact that A* does not contain co follows from Ar not containing l~ by a 

classical result of Bessaga and Pelczynski (see [11], p. 103). 

(5) We first prove 

LEMMA 6. Let (x~) be a normalized block basis of (x~,,~). I[ ~ -~O weakly in 

C(A), then x,--~O weakly in At. 

PROOF. If (x~) is not weakly null, then by passing to a subsequence we may 

suppose there is an f E A*, Ilfll-- 1 and f(x,)_-> 6 > 0 for all i. Thus Ily II--> 
whenever y is a convex combination of the x~'s. But there is a block basis, (y~), of 

convex combinations of (x,), with I1~, I1~ ~ 0 .  Thus by Lemma 5, there is a block 
basis (z~) of convex combinations of (x,) which is weakly null, a contradiction. • 

Let [(S~)] be the closed linear span of all S~'s where fl is a segment. If 

[(S~)] ~ A*, there exists Fyg 0 in A** with F ]i(s~)l = 0. Since l~ does not embed in 

AT, by [14] there exists (xn)C Ar which converges weak* (in A*.*) to F with 

Ilxo II--IIFII for all n. Since F li(s~, j = 0, we may suppose (x , ) i s  a block basis of 
(x(,.o). Thus since lim,;,(/31 = l im,S~(x,)= F ( S ~ ) = 0  for all segments /3, by 

Lemma 6, (Xn) is weakly null and so F = 0, a contradiction. 

(6) We shall show that if Qi)C A* is a basic sequence with a spreading model, 

then (f2~ -/2,+~) has a spreading model equivalent to the unit vector basis of co. 

(6) follows by the following lemma. 

LEMMA 7. Let (y,) be a normalized subsymmetric basic sequence so that 

(y2. - y2,, ~) is equivalent to t~e unit vector basis of c,,. Then (y,) is equivalent to 

either the unit vector basis of co or to the summing basis. 

REMARK. Since the spreading model of a weakly null sequence is uncondi- 

tional, it will follow that the spreading model of every weakly null sequence in Ar 

is equivalent to the unit vector basis of co. 

PROOF OF LEMMA 7. Recall that the summing basis, (s.), satisfies lie a,s, tl = 

sup. 15;7'~1 a, I- If (y~) is weakly null, it is unconditional hence there exists K < 

so that [[ETe,y, II-- K for all ~-, --- -- 1, n E N. Thus (y~) is equivalent to the unit 

vector basis of c,,. 

If (y.) is not weakly null, then there exists f E [(y.)]* so that f(y,,) => e > 0 for 

some subsequence (yo,). Thus by subsymmetry, (y,,) dominates the summing 

basis. That (y.) is dominated by (s,) follows from the fact that (y2. - y : . . , )  and 
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( y 2 . - 1 -  y2,) are both K-equivalent  to the unit vector basis of co, for some K. 

Indeed,  

~, aft, = ax(y~ - y2) + (a~ + a2)(y: - y3) + (a, + a2 + a3)(y3 - y4) 

+ (am + a2+ a3+ a~)(yn- ys)+ "'" 

and so 

I ai l =2Klasl 
Before attacking the general @)C_ A*, we prove the result in a special case. 

Let  (x ~'.,i)) be the biorthogonal functionals to (xt..o). 

LEMMA 8. Let  @)~=, be a normalized block basis of  * (x {.,i)) with 

f, E span{x*{,.).'2" '<d (n , i )<2" ' }=  

for l <= i <= k and integers no < nl < " " < nk. I f  k <= 2% then @)~=, is 32- 

equivalent to the unit vector basis of l~. 

PROOF. Let  Ilg,~aif, l l=Y~a~f~(x )where  x EA.r ,  Ilxll<=2 and P2-,, ~x = 0 .  

Write x = E~=l xi where x~ = O . . . . . .  x. Then 

k k 

Y a/,(x)= Y. a/,(x,) 
i = 1  1 

k 

_-< max [a, I max[[f~ H Z I[ x, [[ 
1 

=< 8 max I a, Ill x I[ 

=< 16max]a, l  
i 

(by L e m m a  3). 

Also if II x II = 1 and f~(x) = sign a~, 

1~] a,/~ ] => 2-' ~ a,~(O~, ,.~x) 

= 2-'[a~,l. • 

For the general case, let 0r~) be a normalized basic sequence in A* with a 

spreading model.  We need only show (( ' i-f '~+~) has a spreading model 

equivalent to the unit vector basis of Co for some subsequence, (f'~). 
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We may thus assume limj~fj(x(°.i~) exists for all ( n , i ) E A .  Also we may 

assume (by (5)) that f~ E span{S~ :/3 is a segment} for all i. The following lemma 

is an easy consequence of Lemma 6. 

LEMMA 9. Let/3 be an infinite segment in A. Then (xt,.~)(,.o~ is weak Cauchy. 

PROOF. If not, there exists a subsequence (y.)  of (X(n.*~)~n,.~,, an f E A*. and 

an e > 0  with f(y2. - y2.+~)> e for all n. But (y2,, - "~2 .+ , )  is weakly null in C(A) 

and so (y2n -- y2 .+1)  is weakly null in AT, a contradiction. • 

Write ft - f2 = gl + hi where', g, E span{x ~,,~: d (n, i) < 2 "l} and h~ = E~(l~ ~ a lS¢l, 
where the/3 l's are pairwise disjoint infinite segments originating at the m,-level 

of A (i.e., 2m'<=o(/31)<2 'n'< for 1_-< i =< k(1)). 

Let  

Ap (io) = ,,.llm I, fp (x,,,,,). 

We may assume (by passing to a subsequence) that A (io)= l i m o ~  Ap(io) exists 

for 1 _-< io _-< k(1). Thus we may assume (by perturbing the f~'s, if necessary) that 

for j > 2, 
k ( D  

= ~ A( i )S¢,+d,  
i I 

where 4 E s p a n { S ~ : / 3  is a segment in A, /371/31 is finite for l_-<i-<k(1)}. 

Hence,  by perturbing, we may suppose f, - f4 = ge + he where 
g2 E span{x ~.,i~: 2", _--< d(n, i)<: 2 m2} and he = E)~Z / a~S~, where the /3~'s are dis- 

joint infinite segments original:ing at the m2-1evel of A and moreover  the/3~'s are 

disjoint from the /31's as well! 

Continue in this fashion, obtaining (after passing to subsequences and 

perturbing) f_, ~ - f2t = g~ + ht with g~ E span{x ~,,~): 2"' 1 ~ d(n, i) < 2 m'} and h~ = 

Y~2~a~S,, with the /31's infinite pairwise disjoint segments originating on the 

mrlevel  of A and disjoint from the/3~'s for 1 =<j < l and 1 _<- i _-< k(j).  Note that 

11&ll_-<2 and IIh~ll-<4 for all ,. 

We claim that this sequence of differences of a subsequence of ~ ) ,  which we 

have relabelled (f.~ -/2~<),  has a spreading model equivalent to the unit vector 

basis of co. Indeed let n E N and let (a,)~2~ be scalars. We shall show 

(v) ~ a,(f2, - f2,+O =<416max[a,[,  

which will complete the proof. 

To see this we write 
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By Lemma 8, 

~ a i ( f 2 i - f 2 i < )  N ~ a i g i  + ~ a i h i  . 

, a,& <= 16max[ a~ I llg, II ~ 32max], a, I. 

Let IIx]]<=2 with e2,.° ,x = 0  and I]Y.2~"a,h, lt=Z2n"a,h,(x). For n <=i<2n, let 

G = q , j ) C A : ( q , j ) ~ _  [..J U ~8;and2m'<=o(q,j)<2"+',or(q,J) ~ U ~8 . 
n N l < i  p = l  p = l  

k(,l 2"-'" )}. Ee, = ( q , h ) E A : ( q , j ) f f :  [,.J I,.J ~'e and <-_O(q,j 
n ~ l < 2 n  p = l  

Define 

Let  
2n 

x = ~', x~ where x, C span{x~q.n:(q,j) E E,}. 
n 

LEMMA 10. Y,~°IIX~II<=4811XlI. 

PROOF. It suffices to show that each x~ has a representative y~ = £j&l(x~)eo~,l) 

where the ~' = y j s  are segments contained in E~ and ]]y~ l] > (24) -ill x, II. 
x;q~n,., where q(i)-<_2 ", and the ~' Each x, can be expressed as x~ , . ~ = ~  = x~ s are 

disjointly supported vectors, each supported in G and "separa ted"  from one 

another  by the infinite branches - -  the /3~p'S for l <  i. 

SUBLEMMA. Let % and "/2 be disjoint infinite segments, y~ = 
, i  , i  {(m,],,),(m + 1,1,) . . . .  } for i = 1,2, with j~ < j~. Let (/3~)7=~ be disjoint infinite 

segments originating at the (m + k )-level of A (k > O) and suppose that j~ < j < j~ 
for all ( m + k , j ) E U i f l ,  Let F = { ( m + n , j ) E A : O < - n < k =  and i , <  "~ j <  
j~}U CJI=,/3~. Let x Espan{x{, , ,~ ' (n , i )EF}.  Then x has a representative, y = 
£ S¢(x)e,,(~,,, where the &'s are disjoint segments contained within f and Ily II --> 
12 '][x II. 

PROOF OF SUBLEMMA. Let z =£&,(x)eo(~a be a representative of x with 

I Iz l l -  -> 4-'llx II, such that each segment c~ originates at level m or a larger level. 

We may assume for all i, mC_FU"/,U"/_~ and & , ( x ) / 0 .  Let  L = { i : c ~  

originates on %}, L_ = {i 'c~ originates on "/2} and I3 = { i : m  originates on F}. 

Then for some p = 1,2 or 3 

, ~  &,eo,~,, => 3 'H z [[. 
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If p = 3, we let y = Ei~13 So, (x)eo<~o. If p = 1 (a similar argument  works for p = 2), 

for i E I1 let 8~ = ai A F, and set y = E ~  S~, (X)eo~8,). Since S., ( x ) =  $8, ( x ) a n d  
o(a,~) < o(ai) implies o(6~)< o(Sj), 

3 'llz)l  S~,(X)eo(~,) --<Hyll. 

This proves the subtemma.  

Returning to the proof  of L e m m a  10, by applying the sublemma to each x} we 

can find a representat ive y~ of x~ de termined by segments  contained wholly 

within E~ and with 

( 12 lllxill) (24)-111x,11. ]ly, II_-> 2-' \ ,=,  _-> 

Finally we complete  the proof  of (v): 

~ aihi 2~ 2~ := a i h i ( x )  = a i h i ( x i )  
n n 

2 n  

_-'~ max [a, [][h~ ]1~] IIx, II 
n 

"--~ 4(48)11 x II max [a, i by L e m m a  10, 

_-'~ 384 max l ai ]. 
i 

The proofs of (7) and ( 8 ) a r e  similar to arguments  in [10]. 

(7) First we prove 

LEMMA 11. Let (/3i)7=~ be disjoint infinite segments in A, all originating at level 
m with m >= n. Then (S0,)7=i is 2-equivalent to the unit basis of l"~. 

PROOF. Let  (a,)7=, be scalars and choose x E Ar  with Ilx II = i and IIY~7 a,S~, II = 
27 a,So, (x). Then clearly 

m a x  [ a i ] ~  [~aiSa, = ~aiS"(x)<=max[a'l~-~lst~'(x)]l l 

=<2 max lai [ . • 
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We claim that A~/[(x*~..n)(..n~A] is isomorphic to co(A). Indeed, define 
O : A*---~ co(A) by 0(]')( /3)  = lim~..n~o)C(x(.,,~), the limit existing by Lemma 9. O is 
a well defined bounded linear mapping with kernel = [(x ]'..n) : (n, i) E A] by (5) 
and Lemma 11. 

(8) Since (x~..o) is boundedly complete, Ar = B* where B = [(x*~..,~)~..~)~A]. 
Thus by (7), B**/B--co(A) ( " - - "  denotes isomorphism) and so B l -  I,(A) 
(B l t aken  in B***).  Hence  

A'r* = B*** ~ B±OB *-/,(A)(~AT. 

Alternat ive ly ,  it is not  hard  to check directly that  if for  /3 E A, F~ is the 

weak*-limit in A** of the sequence (x~..o)~.,~, then ( F e ) ~  is 2-equivalent to 
the unit vector basis of l,(A) and A ~ ( ~ [ ( F ~ ) ~ ]  = A*~*. 

PROBLEM. Give an example of a nonseparable reflexive space not containing 
a subsysmmetric basic sequence. 
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